Numerical Approximation of Kerr-debye Equations
نویسندگان
چکیده
We investigate finite volume schemes for the one-dimensional Kerr-Debye model of electromagnetic propagation in nonlinear media. In this relaxation quasilinear hyperbolic system, the relaxation parameter is the response time of the media. When it tends to zero, the relaxed limit is known as the Kerr system. We show that basic explicit splitting methods fail to preserve this asymptotic. Following two different viewpoints, we construct splitting implicit and well-balanced explicit approximations which are stable, entropic and own the correct asymptotic behavior. Various numerical experiments are performed.
منابع مشابه
Finite Element Approximation of Maxwell's Equations with Debye Memory
Maxwell’s equations in a bounded Debye medium are formulated in terms of the standard partial differential equations of electromagnetism with a Volterra-type history dependence of the polarization on the electric field intensity. This leads to Maxwell’s equations with memory. We make a correspondence between this type of constitutive law and the hereditary integral constitutive laws from linear...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملTemporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media
This paper is concerned with the approximation of the time domain Maxwell equations in a dispersive propagation medium by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the medium. We adapt the locally implicit time integration method from [1] and derive a convergence analysis to prove that the locally implicit DGTD method for...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کامل